Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Front Immunol ; 15: 1384193, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38694504

RESUMEN

The common bed bug, Cimex lectularius, is an urban pest of global health significance, severely affecting the physical and mental health of humans. In contrast to most other blood-feeding arthropods, bed bugs are not major vectors of pathogens, but the underlying mechanisms for this phenomenon are largely unexplored. Here, we present the first transcriptomics study of bed bugs in response to immune challenges. To study transcriptional variations in bed bugs following ingestion of bacteria, we extracted and processed mRNA from body tissues of adult male bed bugs after ingestion of sterile blood or blood containing the Gram-positive (Gr+) bacterium Bacillus subtilis or the Gram-negative (Gr-) bacterium Escherichia coli. We analyzed mRNA from the bed bugs' midgut (the primary tissue involved in blood ingestion) and from the rest of their bodies (RoB; body minus head and midgut tissues). We show that the midgut exhibits a stronger immune response to ingestion of bacteria than the RoB, as indicated by the expression of genes encoding antimicrobial peptides (AMPs). Both the Toll and Imd signaling pathways, associated with immune responses, were highly activated by the ingestion of bacteria. Bacterial infection in bed bugs further provides evidence for metabolic reconfiguration and resource allocation in the bed bugs' midgut and RoB to promote production of AMPs. Our data suggest that infection with particular pathogens in bed bugs may be associated with altered metabolic pathways within the midgut and RoB that favors immune responses. We further show that multiple established cellular immune responses are preserved and are activated by the presence of specific pathogens. Our study provides a greater understanding of nuances in the immune responses of bed bugs towards pathogens that ultimately might contribute to novel bed bug control tactics.


Asunto(s)
Chinches , Perfilación de la Expresión Génica , Transcriptoma , Animales , Chinches/inmunología , Chinches/genética , Masculino , Escherichia coli/inmunología , Bacillus subtilis/inmunología , Bacillus subtilis/genética , Transducción de Señal/inmunología , Péptidos Antimicrobianos/genética , Péptidos Antimicrobianos/inmunología
2.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38732132

RESUMEN

Insects possess an effective immune system, which has been extensively characterized in several model species, revealing a plethora of conserved genes involved in recognition, signaling, and responses to pathogens and parasites. However, some taxonomic groups, characterized by peculiar trophic niches, such as plant-sap feeders, which are often important pests of crops and forestry ecosystems, have been largely overlooked regarding their immune gene repertoire. Here we annotated the immune genes of soft scale insects (Hemiptera: Coccidae) for which omics data are publicly available. By using immune genes of aphids and Drosophila to query the genome of Ericerus pela, as well as the transcriptomes of Ceroplastes cirripediformis and Coccus sp., we highlight the lack of peptidoglycan recognition proteins, galectins, thaumatins, and antimicrobial peptides in Coccidae. This work contributes to expanding our knowledge about the evolutionary trajectories of immune genes and offers a list of promising candidates for developing new control strategies based on the suppression of pests' immunity through RNAi technologies.


Asunto(s)
Hemípteros , Proteínas de Insectos , Animales , Hemípteros/genética , Hemípteros/inmunología , Proteínas de Insectos/genética , Proteínas de Insectos/inmunología , Transcriptoma/genética , Filogenia , Péptidos Antimicrobianos/genética , Galectinas/genética , Galectinas/metabolismo , Proteínas Portadoras
3.
Int J Mol Sci ; 25(8)2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38673813

RESUMEN

We explored the metabolic integration of Blattella germanica and its obligate endosymbiont Blattabacterium cuenoti by the transcriptomic analysis of the fat body of quasi-aposymbiotic cockroaches, where the endosymbionts were almost entirely removed with rifampicin. Fat bodies from quasi-aposymbiotic insects displayed large differences in gene expression compared to controls. In quasi-aposymbionts, the metabolism of phenylalanine and tyrosine involved in cuticle sclerotization and pigmentation increased drastically to compensate for the deficiency in the biosynthesis of these amino acids by the endosymbionts. On the other hand, the uricolytic pathway and the biosynthesis of uric acid were severely decreased, probably because the reduced population of endosymbionts was unable to metabolize urea to ammonia. Metabolite transporters that could be involved in the endosymbiosis process were identified. Immune system and antimicrobial peptide (AMP) gene expression was also reduced in quasi-aposymbionts, genes encoding peptidoglycan-recognition proteins, which may provide clues for the maintenance of the symbiotic relationship, as well as three AMP genes whose involvement in the symbiotic relationship will require additional analysis. Finally, a search for AMP-like factors that could be involved in controlling the endosymbiont identified two orphan genes encoding proteins smaller than 200 amino acids underexpressed in quasi-aposymbionts, suggesting a role in the host-endosymbiont relationship.


Asunto(s)
Cuerpo Adiposo , Simbiosis , Transcriptoma , Simbiosis/genética , Animales , Cuerpo Adiposo/metabolismo , Femenino , Perfilación de la Expresión Génica , Sistema Inmunológico/metabolismo , Bacteroidetes/genética , Bacteroidetes/metabolismo , Péptidos Antimicrobianos/metabolismo , Péptidos Antimicrobianos/genética
4.
Bull Entomol Res ; 114(2): 281-292, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38602247

RESUMEN

Mythimna separata (Lepidoptera: Noctuidae) is an omnivorous pest that poses a great threat to food security. Insect antimicrobial peptides (AMPs) are small peptides that are important effector molecules of innate immunity. Here, we investigated the role of the AMP cecropin B in the growth, development, and immunity of M. separata. The gene encoding M. separata cecropin B (MscecropinB) was cloned. The expression of MscecropinB was determined in different developmental stages and tissues of M. separata. It was highest in the prepupal stage, followed by the pupal stage. Among larval stages, the highest expression was observed in the fourth instar. Tissue expression analysis of fourth instar larvae showed that MscecropinB was highly expressed in the fat body and haemolymph. An increase in population density led to upregulation of MscecropinB expression. MscecropinB expression was also upregulated by the infection of third and fourth instar M. separata with Beauveria bassiana or Bacillus thuringiensis (Bt). RNA interference (RNAi) targeting MscecropinB inhibited the emergence rate and fecundity of M. separata, and resulted in an increased sensitivity to B. bassiana and Bt. The mortality of M. separata larvae was significantly higher in pathogen plus RNAi-treated M. separata than in controls treated with pathogens only. Our findings indicate that MscecropinB functions in the eclosion and fecundity of M. separata and plays an important role in resistance to infection by B. bassiana and Bt.


Asunto(s)
Proteínas de Insectos , Larva , Mariposas Nocturnas , Animales , Mariposas Nocturnas/inmunología , Mariposas Nocturnas/genética , Mariposas Nocturnas/microbiología , Mariposas Nocturnas/crecimiento & desarrollo , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Larva/crecimiento & desarrollo , Larva/microbiología , Bacillus thuringiensis , Beauveria/fisiología , Péptidos Antimicrobianos/genética , Pupa/crecimiento & desarrollo , Interferencia de ARN
5.
Mar Biotechnol (NY) ; 26(2): 230-242, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38502428

RESUMEN

Antibiotics are widely used in aquaculture to treat the bacterial diseases. However, the improper use of antibiotics could lead to environmental pollution and development of resistance. As a safe and eco-friendly alternative, antimicrobial peptides (AMPs) are commonly explored as therapeutic agents. In this study, a mutant strain of Tetraselmis subcordiformis containing AMP NZ2114 was developed and used as an oral drug delivery system to reduce the use of antibiotics in turbot (Scophthalmus maximus) aquaculture. The gut, kidney, and liver immune-related genes and their effects on gut digestion and bacterial communities in turbot fed with NZ2114 were evaluated in an 11-day feeding experiment. The results showed that compared with the group fed with wild-type T. subcordiformis, the group fed with T. subcordiformis transformants containing NZ2114 was revealed with decreased levels of both pro-inflammatory factors (TNF-α and IL-1ß), inhibitory effect on Staphylococcus aureus, Vibrio parahaemolyticus, and Vibrio splendidus demonstrated by the in vitro simulation experiments, and increased richness and diversity of the gut microbiota of turbot. In conclusion, our study provided a novel, beneficial, and low-cost method for controlling bacteria in turbot culture through the oral drug delivery systems.


Asunto(s)
Peces Planos , Microalgas , Animales , Peces Planos/inmunología , Peces Planos/genética , Peces Planos/microbiología , Administración Oral , Péptidos Antimicrobianos/farmacología , Péptidos Antimicrobianos/genética , Microbioma Gastrointestinal/efectos de los fármacos , Acuicultura , Chlorophyta , Vibrio/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/administración & dosificación , Hígado/metabolismo , Hígado/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos
6.
Protein Expr Purif ; 219: 106475, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38552891

RESUMEN

AA139, a variant of natural antimicrobial peptide (AMP) arenicin-3, displayed potent activity against multidrug-resistant (MDR) and extensively drug-resistant (XDR) Gram-negative bacteria. Nevertheless, there were currently few reports on the bioprocess of AA139, and the yields were less than 5 mg/L. Additionally, it was difficult and expensive to prepare AA139 through chemical synthesis due to its complex structure. These factors have impeded the further research and following clinical application of AA139. Here, we reported a bioprocess for the preparation of AA139, which was expressed in Escherichia coli (E. coli) BL21 (DE3) intracellularly in a soluble form via SUMO (small ubiquitin-related modifier) fusion technology. Then, recombinant AA139 (rAA139, refer to AA139 obtained by recombinant expression in this study) was obtained through the simplified downstream process, which was rationally designed in accordance with the physicochemical characteristics. Subsequently, the expression level of the interest protein was increased by 54% after optimization of high cell density fermentation (HCDF). Finally, we obtained a yield of 56 mg of rAA139 from 1 L culture with a purity of 98%, which represented the highest reported yield of AA139 to date. Furthermore, various characterizations were conducted to confirm the molecular mass, disulfide bonds, and antimicrobial activity of rAA139.


Asunto(s)
Péptidos Antimicrobianos , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/efectos de los fármacos , Péptidos Antimicrobianos/genética , Péptidos Antimicrobianos/farmacología , Péptidos Antimicrobianos/química , Péptidos Antimicrobianos/biosíntesis , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/farmacología , Fermentación , Expresión Génica
7.
Insect Mol Biol ; 33(3): 270-282, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38329162

RESUMEN

Insects rely on their innate immune system to eliminate pathogenic microbes. As a system component, cytokines transmit intercellular signals to control immune responses. Growth-blocking peptide (GBP) is a member of the stress-responsive peptide family of cytokines found in several orders of insects, including Drosophila. However, the physiological role of GBP in defence against pathogens is not thoroughly understood. In this study, we explored the functions of GBP in a lepidopteran pest, Ostrinia furnacalis. Injection of recombinant O. furnacalis GBP (OfGBP) precursor (proGBP) and chemically synthesised GBP significantly induced the transcription of antimicrobial peptides (AMPs) and other immunity-related genes including immune deficiency (IMD) and Dorsal. The level of OfGBP mRNA was upregulated after bacterial infection. Knockdown of OfGBP expression led to a decrease in IMD, Relish, MyD88 and Dorsal mRNA levels. OfGBP induced phenoloxidase activity and affected hemocyte behaviours in O. furnacalis larvae. In summary, GBP is a potent cytokine, effectively regulating AMP synthesis, melanization response and cellular immunity to eliminate invading pathogens.


Asunto(s)
Proteínas de Insectos , Larva , Mariposas Nocturnas , Animales , Mariposas Nocturnas/inmunología , Mariposas Nocturnas/genética , Mariposas Nocturnas/crecimiento & desarrollo , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Larva/crecimiento & desarrollo , Larva/inmunología , Péptidos Antimicrobianos/farmacología , Péptidos Antimicrobianos/genética , Péptidos Antimicrobianos/metabolismo , Hemocitos/metabolismo , Inmunidad Innata
8.
Protein J ; 43(2): 129-158, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38180586

RESUMEN

Heavy and irresponsible use of antibiotics in the last century has put selection pressure on the microbes to evolve even faster and develop more resilient strains. In the confrontation with such sometimes called "superbugs", the search for new sources of biochemical antibiotics seems to have reached the limit. In the last two decades, bioactive antimicrobial peptides (AMPs), which are polypeptide chains with less than 100 amino acids, have attracted the attention of many in the control of microbial pathogens, more than the other types of antibiotics. AMPs are groups of components involved in the immune response of many living organisms, and have come to light as new frontiers in fighting with microbes. AMPs are generally produced in minute amounts within organisms; therefore, to address the market, they have to be either produced on a large scale through recombinant DNA technology or to be synthesized via chemical methods. Here, heterologous expression of AMPs within bacterial, fungal, yeast, plants, and insect cells, and points that need to be considered towards their industrialization will be reviewed.


Asunto(s)
Péptidos Antimicrobianos , Péptidos Antimicrobianos/química , Péptidos Antimicrobianos/genética , Animales , Hongos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/biosíntesis , Bacterias/metabolismo , Bacterias/genética , Plantas/metabolismo , Plantas/química , Plantas/genética , Insectos/genética , Insectos/metabolismo
9.
Nature ; 626(7998): 377-384, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38109938

RESUMEN

Many of the Earth's microbes remain uncultured and understudied, limiting our understanding of the functional and evolutionary aspects of their genetic material, which remain largely overlooked in most metagenomic studies1. Here we analysed 149,842 environmental genomes from multiple habitats2-6 and compiled a curated catalogue of 404,085 functionally and evolutionarily significant novel (FESNov) gene families exclusive to uncultivated prokaryotic taxa. All FESNov families span multiple species, exhibit strong signals of purifying selection and qualify as new orthologous groups, thus nearly tripling the number of bacterial and archaeal gene families described to date. The FESNov catalogue is enriched in clade-specific traits, including 1,034 novel families that can distinguish entire uncultivated phyla, classes and orders, probably representing synapomorphies that facilitated their evolutionary divergence. Using genomic context analysis and structural alignments we predicted functional associations for 32.4% of FESNov families, including 4,349 high-confidence associations with important biological processes. These predictions provide a valuable hypothesis-driven framework that we used for experimental validatation of a new gene family involved in cell motility and a novel set of antimicrobial peptides. We also demonstrate that the relative abundance profiles of novel families can discriminate between environments and clinical conditions, leading to the discovery of potentially new biomarkers associated with colorectal cancer. We expect this work to enhance future metagenomics studies and expand our knowledge of the genetic repertory of uncultivated organisms.


Asunto(s)
Archaea , Bacterias , Ecosistema , Evolución Molecular , Genes Arqueales , Genes Bacterianos , Genómica , Conocimiento , Péptidos Antimicrobianos/genética , Archaea/clasificación , Archaea/genética , Bacterias/clasificación , Bacterias/genética , Biomarcadores , Movimiento Celular/genética , Neoplasias Colorrectales/genética , Genómica/métodos , Genómica/tendencias , Metagenómica/tendencias , Familia de Multigenes , Filogenia , Reproducibilidad de los Resultados
10.
Science ; 381(6655): eadg5725, 2023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37471548

RESUMEN

Antimicrobial peptides are host-encoded immune effectors that combat pathogens and shape the microbiome in plants and animals. However, little is known about how the host antimicrobial peptide repertoire is adapted to its microbiome. Here, we characterized the function and evolution of the Diptericin antimicrobial peptide family of Diptera. Using mutations affecting the two Diptericins (Dpt) of Drosophila melanogaster, we reveal the specific role of DptA for the pathogen Providencia rettgeri and DptB for the gut mutualist Acetobacter. The presence of DptA- or DptB-like genes across Diptera correlates with the presence of Providencia and Acetobacter in their environment. Moreover, DptA- and DptB-like sequences predict host resistance against infection by these bacteria across the genus Drosophila. Our study explains the evolutionary logic behind the bursts of rapid evolution of an antimicrobial peptide family and reveals how the host immune repertoire adapts to changing microbial environments.


Asunto(s)
Acetobacter , Péptidos Antimicrobianos , Proteínas de Drosophila , Drosophila melanogaster , Interacciones Huésped-Patógeno , Microbiota , Providencia , Animales , Péptidos Antimicrobianos/genética , Péptidos Antimicrobianos/metabolismo , Drosophila melanogaster/inmunología , Drosophila melanogaster/microbiología , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Evolución Molecular , Interacciones Huésped-Patógeno/inmunología
11.
Arch Microbiol ; 205(5): 199, 2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37069440

RESUMEN

Antibiotic-resistant pathogens have become a great universal health concern. Antimicrobial peptides (AMPs) are small amphipathic and cationic polypeptides with high therapeutic potential against various microorganisms containing drug-resistant strains. Two major groups of these peptides, which have antibacterial activity against Gram-positive and Gram-negative bacteria, antiviral activity, and even antifungal activity, are defensins and cathelicidins. Hybridization of various AMPs is an appropriate approach to achieving new fusion AMPs with high antibacterial activity but low cellular toxicity. In the current research, the amino-acid sequence of human cathelicidin LL-37 (2-31) and Human beta-defensin (hBD)-129 were combined, and the fusion protein was evaluated by bioinformatics tool. The designed AMP gene sequence was commercially synthesized and cloned in the pET-28a expression vector. The LL-37/hBD-129 fusion protein was expressed in E.coli BL21-gold (DE3). The expression of the recombinant protein was evaluated using the SDS-PAGE method. The LL37/hBD-129 was successfully expressed as a recombinant hybrid AMP in E.coli BL21-gold (DE3) strain. Purification of the expressed AMP was performed by Ni-NTA column affinity chromatography, and the purified AMP was validated using the Western blot technic. Finally, the antimicrobial activity of the fusion AMP against Staphylococcus aureus and Escherichia coli bacteria was assessed. Based on the in silico analysis and experimental evaluations, the fusion AMP showed a significant antimicrobial effect on E. coli and Staphylococcus aureus bacteria.


Asunto(s)
Antibacterianos , Péptidos Antimicrobianos , Catelicidinas , Proteínas Recombinantes de Fusión , beta-Defensinas , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Antibacterianos/farmacología , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/farmacología , beta-Defensinas/biosíntesis , beta-Defensinas/química , beta-Defensinas/genética , beta-Defensinas/farmacología , Catelicidinas/biosíntesis , Catelicidinas/química , Catelicidinas/genética , Catelicidinas/farmacología , Péptidos Antimicrobianos/química , Péptidos Antimicrobianos/genética , Péptidos Antimicrobianos/aislamiento & purificación , Péptidos Antimicrobianos/farmacología , Staphylococcus aureus/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Diseño de Fármacos , Simulación por Computador , Simulación de Dinámica Molecular , Pruebas de Sensibilidad Microbiana , Estabilidad Proteica
12.
PLoS Genet ; 19(4): e1010725, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37104544

RESUMEN

The necrotrophic plant pathogenic bacterium Dickeya solani emerged in the potato agrosystem in Europe. All isolated strains of D. solani contain several large polyketide synthase/non-ribosomal peptide synthetase (PKS/NRPS) gene clusters. Analogy with genes described in other bacteria suggests that the clusters ooc and zms are involved in the production of secondary metabolites of the oocydin and zeamine families, respectively. A third cluster named sol was recently shown to produce an antifungal molecule. In this study, we constructed mutants impaired in each of the three secondary metabolite clusters sol, ooc, and zms to compare first the phenotype of the D. solani wild-type strain D s0432-1 with its associated mutants. We demonstrated the antimicrobial functions of these three PKS/NRPS clusters against bacteria, yeasts or fungi. The cluster sol, conserved in several other Dickeya species, produces a secondary metabolite inhibiting yeasts. Phenotyping and comparative genomics of different D. solani wild-type isolates revealed that the small regulatory RNA ArcZ plays a major role in the control of the clusters sol and zms. A single-point mutation, conserved in some Dickeya wild-type strains, including the D. solani type strain IPO 2222, impairs the ArcZ function by affecting its processing into an active form.


Asunto(s)
Péptidos Antimicrobianos , Familia de Multigenes , Mutación Puntual , Familia de Multigenes/genética , Genómica , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , Sintasas Poliquetidas/genética , Péptidos Antimicrobianos/genética , Péptidos Antimicrobianos/farmacología , Bacterias/efectos de los fármacos , Ascomicetos/efectos de los fármacos , Dickeya/genética , Dickeya/metabolismo , Regulación Bacteriana de la Expresión Génica/genética
13.
Int J Mol Sci ; 24(2)2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36675034

RESUMEN

Insects rely only on their innate immune system to protect themselves from pathogens. Antimicrobial peptide (AMP) production is the main immune reaction in insects. In Drosophila melanogaster, the reaction is regulated mainly by the Toll and immune deficiency (IMD) pathways. Spaetzle proteins, activated by immune signals from upstream components, bind to Toll proteins, thus, activating the Toll pathway, which in turn, induces AMP genes. Previous studies have shown the difference in immune systems related to Toll and IMD pathways between D. melanogaster and Tribolium castaneum. In T. castaneum, nine Toll and seven spaetzle (spz) genes were identified. To extend our understanding of AMP production by T. castaneum, we conducted functional assays of Toll and spaetzle genes related to Toll-pathway-dependent AMP gene expression in T. castaneum under challenge with bacteria or budding yeast. The results revealed that Toll3 and Toll4 double-knockdown and spz7 knockdown strongly and moderately reduced the Toll-pathway-dependent expression of AMP genes, respectively. Moreover, Toll3 and Toll4 double-knockdown pupae more rapidly succumbed to entomopathogenic bacteria than the control pupae, but spz7 knockdown pupae did not. The results suggest that Toll3 and Toll4 play a large role in Toll-pathway-dependent immune reactions, whereas spz7 plays a small part.


Asunto(s)
Péptidos Antimicrobianos , Inmunidad Innata , Infecciones , Tribolium , Animales , Escarabajos/genética , Escarabajos/inmunología , Escarabajos/microbiología , Expresión Génica , Tribolium/genética , Tribolium/inmunología , Tribolium/microbiología , Péptidos Antimicrobianos/genética , Péptidos Antimicrobianos/inmunología , Inmunidad Innata/inmunología , Infecciones/inmunología , Infecciones/microbiología
14.
Alcohol ; 107: 136-143, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36150609

RESUMEN

Alcohol use among older adults is on the rise. This increase is clinically relevant as older adults are at risk for increased morbidity and mortality from many alcohol-related chronic diseases compared to younger patients. However, little is known regarding the synergistic effects of alcohol and age. There are intriguing data suggesting that aging may lead to impaired intestinal barrier integrity and dysbiosis of the intestinal microbiome, which could increase susceptibility to alcohol's negative effects. To study the effects of alcohol in age we exposed aged and young mice to 3 days of moderate ethanol and evaluated changes in gut parameters. We found that these levels of drinking do not have obvious effects in young mice but cause significant alcohol-induced gut barrier dysfunction and expression of the pro-inflammatory cytokine TNFα in aged mice. Ethanol-induced downregulation of expression of the gut-protective antimicrobial peptides Defa-rs1, Reg3b, and Reg3g was observed in aged, but not young mice. Analysis of the fecal microbiome revealed age-associated shifts in microbial taxa, which correlated with intestinal and hepatic inflammatory gene expression. Taken together, these data demonstrate that age drives microbiome dysbiosis, while ethanol exposure in aged mice induces changes in the expression of antimicrobial genes important for separating these potentially damaging microbes from the intestinal lumen. These changes highlight potential mechanistic targets for prevention of the age-related exacerbation of effects of ethanol on the gut.


Asunto(s)
Disbiosis , Etanol , Microbioma Gastrointestinal , Inflamación , Intestinos , Animales , Ratones , Péptidos Antimicrobianos/genética , Péptidos Antimicrobianos/inmunología , Citocinas/inmunología , Disbiosis/inducido químicamente , Disbiosis/genética , Disbiosis/inmunología , Disbiosis/microbiología , Etanol/farmacología , Etanol/toxicidad , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/inmunología , Inflamación/inducido químicamente , Inflamación/genética , Inflamación/inmunología , Inflamación/microbiología , Intestinos/efectos de los fármacos , Intestinos/inmunología , Intestinos/microbiología , Ratones Endogámicos C57BL , Permeabilidad/efectos de los fármacos , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/inmunología , alfa-Defensinas/genética , alfa-Defensinas/inmunología
15.
J Immunol ; 208(8): 1978-1988, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35379744

RESUMEN

The Drosophila Toll signaling pathway mainly responds to Gram-positive (G+) bacteria or fungal infection, which is highly conserved with mammalian TLR signaling pathway. Although many positive and negative regulators involved in the immune response of the Toll pathway have been identified in Drosophila, the roles of long noncoding RNAs (lncRNAs) in Drosophila Toll immune responses are poorly understood to date. In this study, our results demonstrate that lncRNA-CR33942 is mainly expressed in the nucleus and upregulated after Micrococcus luteus infection. Especially, lncRNA-CR33942 not only modulates differential expressions of multiple antimicrobial peptide genes but also affects the Drosophila survival rate during response to G+ bacterial infection based on the transiently overexpressing and the knockdown lncRNA-CR33942 assays in vivo. Mechanically, lncRNA-CR33942 interacts with the NF-κB transcription factors Dorsal-related immunity factor/Dorsal to promote the transcriptions of antimicrobial peptides drosomycin and metchnikowin, thus enhancing Drosophila Toll immune responses. Taken together, this study identifies lncRNA-CR33942 as a positive regulator of Drosophila innate immune response to G+ bacterial infection to facilitate Toll signaling via interacting with Dorsal-related immunity factor/Dorsal. It would be helpful to reveal the roles of lncRNAs in Toll immune response in Drosophila and provide insights into animal innate immunity.


Asunto(s)
Péptidos Antimicrobianos , Proteínas de Drosophila , Drosophila , ARN Largo no Codificante , Animales , Péptidos Antimicrobianos/genética , Péptidos Antimicrobianos/inmunología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/inmunología , Drosophila/genética , Drosophila/inmunología , Proteínas de Drosophila/genética , Proteínas de Drosophila/inmunología , Drosophila melanogaster/genética , Drosophila melanogaster/inmunología , Inmunidad Innata/genética , Inmunidad Innata/inmunología , ARN Largo no Codificante/genética , ARN Largo no Codificante/inmunología , Factores de Transcripción/inmunología , Factores de Transcripción/metabolismo
16.
Int J Mol Sci ; 23(1)2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-35008992

RESUMEN

In shrimp, several glutathione peroxidase (GPX) genes have been cloned and functionally studied. Increasing evidence suggests the genes' involvement in white spot syndrome virus (WSSV)- or Vibrio alginolyticus-infection resistance. In the present study, a novel GXP gene (LvGPX3) was cloned in Litopenaeus vannamei. Promoter of LvGPX3 was activated by NF-E2-related factor 2. Further study showed that LvGPX3 expression was evidently accelerated by oxidative stress or WSSV or V. alginolyticus infection. Consistently, downregulated expression of LvGPX3 increased the cumulative mortality of WSSV- or V. alginolyticus-infected shrimp. Similar results occurred in shrimp suffering from oxidative stress. Moreover, LvGPX3 was important for enhancing Antimicrobial peptide (AMP) gene expression in S2 cells with lipopolysaccharide treatment. Further, knockdown of LvGPX3 expression significantly suppressed expression of AMPs, such as Penaeidins 2a, Penaeidins 3a and anti-lipopolysaccharide factor 1 in shrimp. AMPs have been proven to be engaged in shrimp WSSV- or V. alginolyticus-infection resistance; it was inferred that LvGPX3 might enhance shrimp immune response under immune challenges, such as increasing expression of AMPs. The regulation mechanism remains to be further studied.


Asunto(s)
Resistencia a la Enfermedad/genética , Glutatión Peroxidasa/genética , Estrés Oxidativo/genética , Penaeidae/genética , Penaeidae/metabolismo , Animales , Péptidos Antimicrobianos/genética , Clonación Molecular , Expresión Génica , Técnicas de Silenciamiento del Gen , Predisposición Genética a la Enfermedad , Penaeidae/microbiología , Penaeidae/virología , Filogenia , Análisis de Secuencia
17.
PLoS Biol ; 20(1): e3001456, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35081110

RESUMEN

In traumatic brain injury (TBI), the initial injury phase is followed by a secondary phase that contributes to neurodegeneration, yet the mechanisms leading to neuropathology in vivo remain to be elucidated. To address this question, we developed a Drosophila head-specific model for TBI termed Drosophila Closed Head Injury (dCHI), where well-controlled, nonpenetrating strikes are delivered to the head of unanesthetized flies. This assay recapitulates many TBI phenotypes, including increased mortality, impaired motor control, fragmented sleep, and increased neuronal cell death. TBI results in significant changes in the transcriptome, including up-regulation of genes encoding antimicrobial peptides (AMPs). To test the in vivo functional role of these changes, we examined TBI-dependent behavior and lethality in mutants of the master immune regulator NF-κB, important for AMP induction, and found that while sleep and motor function effects were reduced, lethality effects were enhanced. Similarly, loss of most AMP classes also renders flies susceptible to lethal TBI effects. These studies validate a new Drosophila TBI model and identify immune pathways as in vivo mediators of TBI effects.


Asunto(s)
Lesiones Traumáticas del Encéfalo/patología , Drosophila melanogaster , Neuroglía/inmunología , Animales , Péptidos Antimicrobianos/genética , Péptidos Antimicrobianos/metabolismo , Lesiones Traumáticas del Encéfalo/inmunología , Lesiones Traumáticas del Encéfalo/mortalidad , Modelos Animales de Enfermedad , Inmunidad Innata , Locomoción , Masculino , Mutación , FN-kappa B/genética , FN-kappa B/metabolismo , Trastornos del Sueño-Vigilia , Transcriptoma
18.
Fish Shellfish Immunol ; 121: 254-264, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34990806

RESUMEN

Antimicrobial peptides (AMPs) and their mimics are rapidly gaining attention as a new class of antimicrobials due to their clinical potential. AMPs are widely distributed throughout nature and participate in the innate host defense. In this study, 18 AMPs, including 3 ß-defensins, 3 hepcidins, 4 liver-expressed antimicrobial peptide 2 (LEAP-2) compounds, 4 g-type lysozymes, 2 c-type lysozymes, and 2 NK-lysins, were identified from the genome of Carassius auratus by a homologous search and were further classified based on their fundamental structural features and molecular phylogeny. C. auratus AMPs were found to be ubiquitously distributed in all tested tissues and showed similar expression profiles, with the exception of ß-defensins, when RT-qPCR was used to investigate the tissue distribution of AMPs in healthy Carassius gibel. In addition, the expression levels of NK-lysin genes in the tested tissues tended to be upregulated upon bacterial and viral infection when representative NK-lysins were chosen to examine their relative expression levels in various tissues. Importantly, the synthetic peptide caNKL2102-119, which targets the functional domain of saposin B in caNK-lysins, could effectively counter Aeromonas hydrophila, Staphylococcus aureus, and Escherichia coli with minimum inhibitory concentration (MIC) values of 3-6 µg/mL, as well as inhibit the proliferation of spring viraemia of carp virus (SVCV). These results provide potential targets for antibiotic-free breeding in the aquaculture industry.


Asunto(s)
Péptidos Antimicrobianos , Enfermedades de los Peces , Proteínas de Peces , Carpa Dorada , beta-Defensinas , Animales , Antiinfecciosos , Péptidos Antimicrobianos/genética , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Carpa Dorada/genética , Carpa Dorada/inmunología , beta-Defensinas/genética
19.
Fish Shellfish Immunol ; 121: 239-244, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34990807

RESUMEN

Mytilin is one of the most important CS-αß peptides involved in innate immune response in Mytilidae. In this study, we successfully identified four mytilin-like antimicrobial peptides (pernalins) from Asian green mussel Perna viridis by aligning the P. viridis transcriptome with 186 mytilins and myticins related sequences collected from the transcriptome data of six Mytilus species. Analysis on gene structure showed that pernalin genes had high conservation with mytilin B of Mediterranean mussel Mytilus galloprovincialis. Interestingly, all pernalin genes have a similar tissue expression feature, evidenced by the highest transcription level observed in the hemocytes and followed by the mantle. The lowest transcription level was observed in the foot and gills. qRT-PCR analysis showed that all pernalin genes were significantly down-regulated at each time points from 3 h to 48 h after Vibrio parahaemolyticus infection, suggesting their timely immune responses after bacterial infection.


Asunto(s)
Péptidos Antimicrobianos/genética , Mytilus , Perna , Animales , Péptidos Catiónicos Antimicrobianos , Clonación Molecular , Mytilus/genética , Perna/genética
20.
Protein Sci ; 31(1): 92-106, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34529321

RESUMEN

The antimicrobial peptide database (APD) has served the antimicrobial peptide field for 18 years. Because it is widely used in research and education, this article documents database milestones and key events that have transformed it into the current form. A comparison is made for the APD peptide statistics between 2010 and 2020, validating the major database findings to date. We also describe new additions ranging from peptide entries to search functions. Of note, the APD also contains antimicrobial peptides from host microbiota, which are important in shaping immune systems and could be linked to a variety of human diseases. Finally, the database has been re-programmed to the web branding and latest security compliance of the University of Nebraska Medical Center. The reprogrammed APD can be accessed at https://aps.unmc.edu.


Asunto(s)
Péptidos Antimicrobianos , Biología Computacional , Bases de Datos de Proteínas , Péptidos Antimicrobianos/química , Péptidos Antimicrobianos/genética , Biología Computacional/historia , Biología Computacional/tendencias , Bases de Datos de Proteínas/historia , Bases de Datos de Proteínas/tendencias , Historia del Siglo XXI
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA